Karstbase Bibliography Database
Karstbase Bibliography Database
Recent acquisition of twenty marine seismic-reflection profiles suggests a hypogenic karst origin for the Key Biscayne sinkhole located on the seafloor of Miami Terrace at the southeastern part of Florida Platform. Analysis of the seismic-reflection data strongly suggest the submarine sinkhole was produced by dissolution and collapse of Plio(?)-Pleistocene age carbonate strata. A complex fault system that includes compres-sional reverse faults underlies the sinkhole, providing a physical system for the possible exchange of groundwater with the sinkhole. One seismic profile is suggestive of a mas-ter feeder pipe beneath the sinkhole. The feeder pipe is characterized by seismic-reflection configurations that resemble megabreccia and stratal collapse. The sinkhole is located at a depth of about 365 m below sea level. The record of sea-level change dur-ing the Plio(?)-Pleistocene and amount of subsidence of the Florida Platform during this span of time indicates that the sinkhole has always been submerged at a water depth of about 235 m or more. Thus, the near-surface epigenic karst paradigm can be ruled out. Possible hypogenic models for sinkhole formation include ascending fluids along the fault system, such as, dissolution related to the freshwater/saltwater mixing at a regional groundwater discharge site, or processes related to gases derived from gener-ation of hydrocarbons within deep Mesozoic strata. Hydrocarbon-related karstification provides several possible scenarios: (1) oxidation of deep oil-field derived hydrogen sulfide at or near the seafloor to form sulfuric acid, (2) reduction of Cretaceous or Paleocene anhydrite or both by oil-field methane to form hydrogen sulfide and later oxidation to form sulfuric acid, and (3) carbon-dioxide charged groundwater reacting to form carbonic acid. Further, anerobic microbes could form methane outside of a hy-drocarbon reservoir that ascends through anhydrite to form hydrogen sulfide and later oxidized to sulfuric acid.