UIS Commission on Karst Hydrogeology and Speleogenesis
Email Print

Karstbase Bibliography Database

Beddows, P.A
Conduit hydrogeology of a tropical coastal carbonate aquifer. Msc thesis

The aim of this study is to investigate the hydrogeology of the submerged conduit systems of a coastal carbonate aquifer (Caribbean coast, Yucatan Peninsula, Mexico), and thereby better understand their significance as large permeability heterogeneities. A complex spatial trend in conduit flow rates (determined by quantitative fluorescent dye tracing initiated 6 km inland) was found, including significant velocity variation between consecutive conduit segments. Elevated coastal velocities under low tide conditions are shown by salinity profiling, to be induced by the volumetric increase of discharging water from mixing with marine water. Semi-diurnal micro-tidal loading is sufficient to induce flooding from the sea into the conduits at one coastal discharge point, and significantly reduce flow rates at another. Furthermore, a network of four observation sites extending 5 km inland indicates efficient propagation of the ~0.30 m tidal signal through the Nohoch Nah Chich conduit system, a distance several time greater than previously appreciated in this environment. The field results clearly indicate that the hydrogeological flux is dominated by cavernous porosity, and that the aquifer is dynamically responsive to the high-frequency low-magnitude tidal loading to a significant distance inland. Conventional coastal groundwater models such as the Ghyben-Herzberg lens model, assume isotropic homogeneous equivalent-porous-medium conditions. Because the corollaries of the conventional models are inconsistent with the field evidence, they are inapplicable in this environment. It is hoped that these results will aid future modelling efforts, and improve our capacity to manage the valuable groundwater resources which represents the unique source of potable water to the local population.

hydrogeology, karst, Caribbean coast, Yucatan Peninsula, Mexico