UIS Commission on Karst Hydrogeology and Speleogenesis
Email Print

Karstbase Bibliography Database

Michie, Neville
An investigation of the climate, carbon dioxide and dust in jenolan caves, n.s.w., Phd thesis

Pressure of use of Jenolan Caves as a tourist spectacle has raised concerns about the wellbeing of the caves, so three related physical subjects were reviewed and investigated; the cave microclimate, the carbon dioxide in the cave atmosphere and dustfall in the caves. The microclimate has been shown to be dominated by several physical processes: in the absence of air movement, conduction and radiation dominate; in association with air movement, convective coupled heat and mass transfer tends to dominate energy flows. A new approach using boundary conditions and qualitative characteristics of transient fronts enables accurate measurement and analysis of energy, heat and mass transfer. This technique avoids the dimensionless number and transfer coefficient methods and is not geometrically sensitive. Conditions in caves are also determined by the capillary processes of water in cave walls. Air movement in caves depends on surface weather conditions and special problems of surface weather observation arise. A series of experiments were undertaken to evaluate the cave and surface processes. The physical processes that collect, transport and release dust were measured and described. Dust in the caves was shown to be carried from the surface, mainly by visitors. The concept of the Personal Dust Ooud is developed and experimental measurements and analysis show that this process is a major threat to the caves. New techniques of measurement are described. An accurate physiological model has been developed which predicts most of the carbon dioxide measured in Jenolan Caves, derived mainly from visitors on the cave tours. This model, developed from previously published human physiological information also predicts the production of heat and water vapour by cave tourists. The effects of carbon dioxide on cave conditions has been investigated. Details of a two year program of measurements in the caves are given. The generalised approach and methods are applicable to other caves, mines and buildings.

caves; cave climate; carbon dioxide; dust; Jenolan Caves; Australia