UIS Commission on Karst Hydrogeology and Speleogenesis
Email Print

Karstbase Bibliography Database

Featured article: conference proceedings
Klimchouk, A.B.
Mádl-Szőnyi, Judit; Erőss, Anita; Mindszenty, Andrea; Tóth, Ádám
Hydrogeological approach to distinguishing hypogene speleogenesis settings
International Symposium on Hierarchical Flow Systems in Karst Regions
Budapest, Hungary

The hydrogeological approach to defining hypogene speleogenesis (HS) relates it to ascending groundwater flow (AF). HS develops where AF causes local disequilibria conditions favoring dissolution and supports them during sufficiently long time in course of the geodynamic and hydrogeological evolution. The disequilibrium conditions at depth are invoked by changing physical-chemical parameters along an AF paths, or/and by the interaction between circulation systems of different scales and hydrody-namic regimes. The association of HS with AF suggests a possibility to discern regulari-ties of development and distribution of HS from the perspectives of the regional hy-drogeological analysis. In mature artesian basins of the cratonic type, settings favorable for AF and HS, are as follows: 1) marginal areas of discharge of the groundwaters of the 2nd hydrogeological story (H-story), 2) zones of topography-controlled upward cir-culation within the internal basin area (at the 1st and, in places, at the 2nd H-stories; 3) crests of anticlinal folds or uplifted tectonic blocs within the internal basin area where the upper regional aquitard is thinned or partially breached; 4) linear-local zones of deep-rooted cross-formational faults conducting AF from internal deep sources across the upper H-stories. Hydrodynamics in the 3rd and 4th stories is dominated by ascending circulation strongly controlled by cross-formational tectonic structures. Specific circula-tion pattern develops in large Cenozoic carbonate platforms (the Florida-type), side-open to the ocean, where AF across stratified sequences in the coastal parts, driven by both topography-induced head gradients and density gradients, involves mixing with the seawater. The latter can be drawn into a platform at deep levels and rise in the plat-form interior (the Kohout’s scheme). In folded regions, AF and HS are tightly con-trolled by faults, especially those at junctions between large tectonic structures. In young intramontaine basins with dominating geostatic regime, HS is favored at margin-al discharge areas where circulation systems of different origins and regimes may inter-act, such as meteoric waters flows from adjacent uplifted massifs, basinal fluids expelled from the basin’s interiors, and endogenous fluids rising along deep-rooted faults. Spe-cific and very favorable settings for HS are found in regions of young volcanism with carbonate formations in a sedimentary cover

karst hydrogeology, hypogene karst, hypogene speleogenesis, hydrogeologi-cal settings