Karstbase Bibliography Database
Karstbase Bibliography Database
The classical epigene speleogenetic model in which CO2 is considered the main source of acidity has been challenged over the last three decades by observations that revealed cave passages unrelated to groundwater drainage routes and surface topography. Most of these passages show unusual morphologies, such are cupolas, floor feeders (i.e., inlets for deep-seated fluids), and huge irregular-shaped rooms that terminate abruptly, and often a rich and diverse mineral association. A hypogenetic speleogenetic pathway was proposed for this group of caves.
The presence of abundant gypsum deposits in caves with one or more of the passage morphologies listed above, have prompted scientists to suggest a new theory (i.e., sulfuric acid speleogenesis, SAS) of cave development. In the hypogenic SAS model, the source of acidity is the sulfuric acid produced by oxidation of H2S (originating from sulfate reduction or petroleum reservoirs) near or at the water table, where it dissolves the limestone bedrock and precipitates extensive gypsum deposits. SAS is now thoroughly documented from numerous caves around the world, with the best examples coming from the Guadalupe Mountains (NM), Frasassi caves (Italy), selected caves in France, Cueva de Villa Luz (Mexico), and Cerna Valley (SW Romania).
To date, discrimination between epigene and hypogene speleogenetic pathways is made using cave morphology criteria, exotic mineral assemblages, and the predominantly negative δ34S values for the cave sulfates. This presentation highlights the role sulfur and oxygen stable isotope analyses have in discriminating between epigene and hypogene caves.
Based on a number of case studies in caves of the Cerna Valley (Romania), we found that relatively S-depleted isotopic composition of cave minerals alone does not provide enough information to clearly distinguish SAS from other complex speleogenetic pathways. In fact, δ34S values of SAS by-products depend not only on the source of the S, but also on the completeness of S redox reactions. Therefore, similar studies to this are needed to precisely diagnose SAS and to provide information on the S cycle in a given karst system.
Integrating cave mineralogy, passage morphology, and geochemical studies may shed light on the interpretation of polygenetic caves, offering clues to processes, mechanisms, and parameters involved in their genesis (sulfate-dominated).