Republished from: Gabrovšek, F. (Ed.). 2002. Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba ZRC, 243-258.
  PDF: /pdf/
Georg Kaufmann

Institute of Geophysics, University of Göttingen, Herzberger Landstrasse 180,
37075 Göttingen, Germany


We present results of a numerical study of karst denudation on limestone plateaux. The landscape evolution model used incorporates not only long-range fluvial processes and short-range hill-slope processes, but also large-scale chemical dissolution of limestone surfaces. The relative efficiencies of fluvial and chemical processes are of equal importance to the landscape evolution of a plateau dropping to sea level along an escarpment. While fluvial processes have an impact confined to river channels, the karst denudation process is more uniform, removing material also from the plateau surface. The combined effect of both processes results in a landscape evolution almost twice as effective as the purely erosional evolution of an insoluble landscape.

Republished from: Gabrovšek, F. (Ed.). 2002. Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba ZRC, 155-190.
  PDF: /pdf/seka_pdf4467.pdf
Pavel Bosák

Institute of Geology, Academy of Sciences of the Czech Republic,
Rozvojová 135, 165 02 Praha 6, Czech Republic


Determining the beginning and the end of the life of a karst system is a substantial problem. In contrast to most of living systems development of a karst system can be „frozen“ and then rejuvenated several times (polycyclic and polygenetic nature). The principal problems may include precise definition of the beginning of karstification (e.g. inception in speleogenesis) and the manner of preservation of the products of karstification. Karst evolution is particularly dependent upon the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities, i.e. intervals of nondeposition (disconformities and unconformities), directly influence the intensity and extent of karstification. The higher the order of discontinuity under study, the greater will be the problems of dating processes and events. The order of unconformities influences the stratigraphy of the karst through the amount of time available for subaerial processes to operate. The end of karstification can also be viewed from various perspectives. The final end occurs at the moment when the host rock together with its karst phenomena is completely eroded/denuded. In such cases, nothing remains to be dated. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole sequence of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the fossilisation of karst due to loss of its hydrological function. Such fossilisation can be caused by metamorphism, mineralisation, marine transgressions, burial by continental deposits or volcanic products, tectonic movements, climatic change etc. Known karst records for the 1st and 2nd orders of stratigraphic discontinuity cover only from 5 to 60 % of geological time. The shorter the time available for karstification, the greater is the likelihood that karst phenomena will be preserved in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during the immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by a number of different geomorphic processes. The longer the duration of subaerial exposure, the more complex are those geomorphic agents.

Republished from: Gabrovšek, F. (Ed.). 2002. Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba ZRC, 155-190.
  PDF: /pdf/seka_pdf4474.pdf
L. Kiraly

Centre d'Hydrogéologie, University of Neuchâtel
11, rue Emile-Argand, CH-2000 Neuchâtel (Switzerland)
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


One of the principal aims of hydrogeology is to propose a reasonably adequate reconstruction of the groundwater flow field, in space and in time, for a given aquifer. For example, interpretation of the chemical and isotopic composition of groundwater, understanding of the geothermal conditions (anomalies) or forecasting the possible effects of industrial waste disposals and of intensive exploitation nearly always would require the knowledge of the regional and/or local groundwater flow systems such as defined by Toth (1963). The problem of estimating the groundwater flow field in fractured and karstified aquifers is approached within the framework of a conceptual diagram showing the relationship between groundwater flow, hydraulic parameters (aquifer properties and boundary conditions), distribution of voids and geological factors.

Autoregulation between groundwater flow and karst aquifer properties, duality of karst, nested model of geological discontinuities, scale effect on hydraulic parameters and use of numerical finite element models to check the interpretation of the global response of karst springs are some of the subjects addressed by the author. Inferences on groundwater flow regime with respect to the stage of karst evolution can be made only if the hydraulic parameter fields and the boundary conditions are known by direct observations, or estimated by indirect methods for the different types of karst. Practical considerations on the monitoring strategies applied for karst aquifers, and on the interpretation of the global response obtained at karst springs will complete the paper, which throughout reflects the point of view of a hydrogeologist.

Keywords: karst hydrogeology, karst aquifers, numerical modelling of karst flow, spring hydrographs

Republished from: Gabrovöek, F. (Ed.). 2002. Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba ZRC, 347-356.
  PDF: /pdf/seka_pdf4495.pdf
Nadja Zupan Hajna

Karst Research Institute ZRC SAZU, Postojna, Slovenia


The weathered parts of carbonate bedrock on cave walls are a consequence of its incomplete chemical dissolution. The phenomenon is expressed in parts of the caves where walls are in contact with clastic fluvial sediments, wetted by percolation water or wetted by condensation water, and not rinsed by flowing or dripping water. The temperature in the cave is not an important parameter of weathered zone formation. Incomplete dissolution is characteristic both of Alpine and of Mediterranean caves. Limestone or dolomite are dissolved by corrosive moisture; the dissolution is distinctly selective and it go as on at intervals depending on inflow of new aggressive water. The weathered zone of limestone or dolomite is almost identical to the parent rocks in its chemical and mineral composition yet it is much more porous. During chemical weathering the amount of Mg, Sr and U is decreased, these components being leached out of limestone and dolomite. The amount of insoluble residue is usually higher in weathered limestones and in some other cases in fresh limestones which is not very common but it may occur.

Republished from: Martin, J. B., Wicks, C. M. and Sasowsky, J. D. (Eds.). 2002. Hydrogeology and Biology of Past - Paleozoic Carbonate Aquifers. KWI Special Publ. 7, Charles Town, West Virginia.
  PDF: /pdf/seka_pdf4487.pdf
Douchko Romanov(1), Wolfgang Dreybrodt(1) and Franci Gabrovsek(2)

(1) University of Bremen, Germany. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
(2) Karst Research Institute ZRC SAZU, Postojna, Slovenia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


Karst aquifers in their initial state consist of a net of fractures with largely differing aperture widths. As a most simple example we investigate the evolution of a karst aquifer where a wide fracture with aperture width A0 = 0.03 cm is embedded into a dense net of narrow fractures of aperture widths a0 < A0. The aim of this work is to investigate the influence of the hydraulic coupling between these fractures to the evolution of the karst aquifer. The modelling domain consists of a confined aquifer, which is divided into a square network consisting of narrow fractures. In its center a straight wide fracture leads from the input at hydraulic head h to the output at head zero. We have computed the breakthrough times of this aquifer as a function of a0. For a0 = 0 the breakthrough time is that of an isolated one-dimensional fracture. As a0 is increased the breakthrough times drop until at about a0 > 0.02 cm they are reduced significantly by almost one order of magnitude. This is caused by the following mechanism. As the central tube gets enlarged into a funnel like shape from its entrance water from its tip is injected into the fine net of fractures. Therefore more aggressive solution enters into the central fracture and enhances dissolutional widening there. By this way aquifers with wide fractures embedded into a continuum of fine fractures experience accelerated karstification.

Keywords by authors: karst, modelling, evolution, dual aquifer, limestone dissolution

Karst & Cave related news

January 24, 2020

The 16th Sinkhole Conference: Register and Help the People of Puerto Rico!

in Miscellaneous by Super User
As written at the top of this news message, our friends in Puerto Rico have told us that the best way you can help the people of the island recover is go to Puerto Rico. We hope you register for the Sinkhole Conference, not simply because we believe it will be a great experience for you, but also because we truly believe it will help these people who have suffered greatly from natural tragedies over the past few years. If you register now and wish to give a presentation, you still have the opportunity. Sign up for Karst Clips, a lightning talk-style session where you can update everyone on…
January 24, 2020

Call for the 2020 EuroSpeleo Protection Label

in Miscellaneous by News Manager
Dear Caving Friends, The European Speleological Federation (FSE) and its European Cave Protection Commission (ECPC) is very pleased to announce the launching of the 2020 Call for the EuroSpeleo Protection Label. Please find enclosed the application form (deadline for applications 15 June 2020). You can also find the application form on the FSE website: The aim of the EuroSpeleo Protection Label is to support active cave protection in the speleo clubs, committees, national commissions,…